Toxicidad del imidacloprid en el desarrollo embrionario de roedores

Autores/as

Palabras clave:

Neonicotinoides, Efectos transgeneracionales, Exposición ambiental, Alteraciones metabólicas, Cambios reproductivos, Mamíferos

Resumen

Esta revisión tiene como objetivo comprender cómo el uso del neonicotinoide imidacloprid promueve efectos transgeneracionales en modelos animales. Aunque el IMI fue desarrollado y comercializado como seguro para los seres humanos debido a su especificidad por los receptores nicotínicos neuronales de los insectos, existen preocupaciones y evidencias sobre la exposición y los daños a organismos no objetivo. Nuestra hipótesis sugiere que la exposición embrionaria al IMI puede inducir alteraciones en la salud de los modelos animales experimentales durante la edad adulta y potencialmente transmitirse a generaciones posteriores. Los datos de la literatura indican que la exposición al IMI puede provocar efectos metabólicos, reproductivos, inmunológicos, conductuales y teratogénicos tanto en las generaciones parentales como en las descendientes. Esta revisión destaca los posibles riesgos para la salud asociados con la exposición a neonicotinoides, particularmente durante períodos críticos del desarrollo. Además, subraya la necesidad de métodos de evaluación estandarizados y regulaciones de seguridad para mitigar los riesgos de la exposición a neonicotinoides tanto para los seres humanos como para las especies no objetivo.

Biografía del autor/a

Bárbara Zanardini de Andrade, Universidade Estadual do Oeste do Paraná

Possui graduação em Ciências Biológicas (2016) e mestrado em Biociências e Saúde (2019) pela Universidade Estadual do Oeste do Paraná (UNIOESTE), onde atualmente curso doutorado no mesmo programa (desde 2022). Minha atuação concentra-se na linha de pesquisa "Fatores que Influenciam a Morfofisiologia Orgânica", com foco nos efeitos de intervenções como a exposição a xenobióticos sobre parâmetros metabólicos e morfológicos em modelos animais. Desenvolvi ampla experiência em consultoria de bioestatística, tanto de forma autônoma quanto no projeto de extensão "Qual é sua pergunta?" (UNIOESTE, desde 2019), aplicando técnicas de análise descritiva, inferencial e multivariada em projetos científicos de diferentes áreas.

Thaís Maylin Sobjak, Universidade Federal de Minas Gerais

Possui graduação em Ciencias Biologicas bacharelado pela Universidade Estadual do Oeste do Paraná(2013), graduação em Programa Especial de Formação de Docente pela Universidade Tecnológica Federal do Paraná(2017), especialização em Especialização em Análises clínicas e toxicológicas pelo Centro Universitário São Camilo(2020), especialização em MBA Gestão Ambiental e Desenvolvimento Sustentável pelo Centro de Ensino Superior de Maringá(2014) e mestrado em CONSERVAÇÃO E MANEJO DE RECURSOS NATURAIS pela Universidade Estadual do Oeste do Paraná(2016). Atualmente é Revisor de periódico da ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, Revisor de periódico da ECOLOGICAL INDICATORS e Doutoranda da Universidade Federal de Minas Gerais. Tem experiência na área de Bioquímica, com ênfase em Ecotoxicologia.

Leanna Camila Macarini, Universidade Federal do Paraná

Graduada em Ciências Biológicas Licenciatura e mestra em Conservação e Manejo de Recursos Naturais pela Universidade Estadual do Oeste do Paraná - UNIOESTE. Doutoranda em Ciências Biológicas Entomologia pela Universidade Federal do Paraná - UFPR. Ao longo da minha trajetória, me dediquei à pesquisa em qualidade ambiental e meu foco acadêmico se concentra no estudo de Comportamento Animal, Ecotoxicologia e Imunologia de insetos, com uma ênfase em grilos e abelhas. Atualmente, estou investigando os efeitos dos agrotóxicos sobre os sistemas antioxidantes de insetos, com o objetivo de compreender o estresse oxidativo celular em organismos não-alvo e os impactos ecológicos decorrentes dessa exposição.

Ana Tereza Bittencourt Guimarães, Universidade Federal de São Carlos

Possui graduação em Ciências Biológicas Bacharelado e Licenciatura pela Universidade Federal do Paraná (1998); mestrado em Ciências, área de concentração em Zoologia pela Universidade Federal do Paraná (2000); e doutorado em Ciências, área de concentração em Ecologia e Recursos Naturais pela Universidade Federal de São Carlos (2009). Pós-doutoranda no Programa de Gestão Ambiental da Universidade Positivo. Tem experiência na área de Bioestatística e Delineamento de Pesquisa, Ecologia Numérica e Ecotoxicologia. É consultora e assessora em Bioestatística, sócia administradora da Empresa Aquaflora e Meio Ambiente oferecendo serviços relacionados à conservação de ambientes naturais, de recursos hídricos e da biodiversidade, e por conseguinte, à saúde humana. Sócia fundadora da empresa "Qual é a sua Pergunta?" que oferece serviços de análises estatísticas na área de Ciências Biológicas e da Saúde. Atualmente, é professora da Associação Hospitalar de Proteção à Infância Dr. Raul Carneiro (Faculdade Pequeno Príncipe).

Citas

Abou-Donia MB, Goldstein LB, Bullman S, et al (2008) Imidacloprid induces neurobehavioral deficits and increases expression of glial fibrillary acidic protein in the motor cortex and hippocampus in offspring rats following in utero exposure. Jour of Toxi and Envi Heal - Part A: Curre Issu 71:119–130. https://doi.org/10.1080/15287390701613140

Akhtar T, Sheikh N, Abbasi MH (2014) Clinical and pathological features of Nerium oleander extract toxicosis in wistar rats. BMC Res Notes 7:1–6. https://doi.org/10.1186/1756-0500-7-947/figures/3

ANVISA (2023) Programa de Análise de Resíduos de Agrotóxicos em Alimentos – PARA: Relatório dos resultados das análises de amostras monitoradas nos ciclos 2018-2019 e 2022. Brasília. https://www.gov.br/anvisa/pt-br/assuntos/agrotoxicos/programa-de-analise-de-residuos-em-alimentos/relatorios-do-programa. Accessed 26 Aug 2024

ANVISA (2019) Programa de Análise de Resíduos de Agrotóxicos em Alimentos – PARA : Relatório das amostras analisadas no período de 2017-2018. Brasília. https://www.gov.br/anvisa/pt-br/assuntos/agrotoxicos/programa-de-analise-de-residuos-em-alimentos/relatorios-do-programa. Accessed 3 Jul 2023

Aria M, Cuccurullo C (2017) Bibliometrix: An R-tool for comprehensive science mapping analysis. J Info 11:959–975. https://doi.org/10.1016/j.joi.2017.08.007

Barker DJP (1998) In utero programming of chronic disease. Cli Sci 95:115–128. https://doi.org/10.1042/cs0950115

Beaupere C, Liboz A, Fève B, et al (2021) Molecular mechanisms of glucocorticoid-induced insulin resistance. Int J Mol Sci 22:1–30. https://doi.org/10.3390/ijms22020623

Bhaskar R, Mishra AK, Mohanty B (2017) Neonatal Exposure to Endocrine Disrupting Chemicals Impairs Learning Behaviour by Disrupting Hippocampal Organization in Male Swiss Albino Mice. Bas Cli Pha Tox 121:44–52. https://doi.org/10.1111/bcpt.12767

Bhaskar R, Mohanty B (2014) Pesticides in mixture disrupt metabolic regulation: In silico and in vivo analysis of cumulative toxicity of mancozeb and imidacloprid on body weight of mice. Gen Com End 205:226–234. https://doi.org/10.1016/j.ygcen.2014.02.007

Borsuah JF, Messer TL, Snow DD, et al (2020) Literature review: Global neonicotinoid insecticide occurrence in aquatic environments. Wat (Swi) 12:1–17. https://doi.org/10.3390/w12123388

Burke AP, Niibori Y, Terayama H, et al (2018) Mammalian Susceptibility to a Neonicotinoid Insecticide after Fetal and Early Postnatal Exposure. Sci Rep 8:1–13. https://doi.org/10.1038/s41598-018-35129-5

Calarco CA, Picciotto MR (2020) Nicotinic Acetylcholine Receptor Signaling in the Hypothalamus: Mechanisms Related to Nicotine’s Effects on Food Intake. Nic & Tob Res 22:152–163. https://doi.org/10.1093/NTR/NTZ010

Carroll MC (2004) The complement system in regulation of adaptive immunity. Nat Imm 2004 5:10 5:981–986. https://doi.org/10.1038/ni1113

Casida JE (2018) Neonicotinoids and Other Insect Nicotinic Receptor Competitive Modulators: Progress and Prospects. Ann Rev Ent 63:125–144. https://doi.org/10.1146/annurev-ento-020117-043042

Casida JE (2011) Neonicotinoid metabolism: Compounds, substituents, pathways, enzymes, organisms, and relevance. J Agr Foo Che 59:2923–2931. https://doi.org/10.1021/jf102438c

Casida JE, Durkin KA (2016) Pesticide chemical research in toxicology: Lessons from nature. Che Res Tox 30:94–104. https://doi.org/10.1021/acs.chemrestox.6b00303

Chen D, Liu Z, Barrett H, et al (2020) Nationwide Biomonitoring of Neonicotinoid Insecticides in Breast Milk and Health Risk Assessment to Nursing Infants in the Chinese Population. J Agr Foo Che 68:13906–13915. https://doi.org/10.1021/acs.jafc.0c05769

Craddock HA, Huang D, Turner PC, et al (2019) Trends in neonicotinoid pesticide residues in food and water in the United States, 1999-2015. Env Hea 18:1–16. https://doi.org/10.1186/s12940-018-0441-7

de Oliveira IM, Nunes BVF, Barbosa DR, et al (2010) Effects of the neonicotinoids thiametoxam and clothianidin on in vivo dopamine release in rat striatum. Tox Let 192:294–297. https://doi.org/10.1016/J.TOXLET.2009.11.005

DeSesso JM, Scialli AR (2018) Bone development in laboratory mammals used in developmental toxicity studies. Bir Def Res 110:1157–1187. https://doi.org/10.1002/BDR2.1350

Deus BCT de, Brandt EMF, Pereira R de O (2021) Priority pesticides not covered by GM Ordinance of the Ministry of Health No. 888, of 2021, on water potability standard in Brazil. Rev Bra de Ciê Amb 57:290–301. https://doi.org/10.5327/z2176-94781077

EFSA (2013a) Regulation (EU) 485/2013. Wiley-Blackwell Publishing Ltd. http://data.europa.eu/eli/reg_impl/2013/485/oj. Accessed 25 Aug 2024

EFSA (2018) Regulation (EU) 2018/783. http://data.europa.eu/eli/reg_impl/2018/783/oj. Accessed 10 Jun 2023

EFSA (2019) Review of the existing maximum residue levels for imidacloprid according to Article 12 of Regulation (EC) No 396/2005 - 2019. In: EFSA Journal. https://efsa.onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2019.5570. Accessed 25 Aug 2024

EFSA (2013b) Scientific Opinion on the developmental neurotoxicity potential of acetamiprid and imidacloprid. EFSA Journal 11:1–47. https://doi.org/10.2903/j.efsa.2013.3471

Elbert A, Becker B, Hartwig J, Erdelen C (1991) Imidacloprid - a new systemic insecticide. In: Pflanzenschutz-Nachrichten Bayer. https://agris.fao.org/agris-search/search.do?recordID=DE92U0152

EPA (2024) Regulatory Limits PESTICIDES/Pesticide MRLs. https://bcglobal.bryantchristie.com/db#/pesticides/query. Accessed 25 Aug 2024

Gawade L, Dadarkar SS, Husain R, Gatne M (2013) A detailed study of developmental immunotoxicity of imidacloprid in Wistar rats. Foo and Che Tox 51:61–70. https://doi.org/10.1016/j.fct.2012.09.009

Grilo LF, Tocantins C, Diniz MS, et al (2021) Metabolic Disease Programming: From Mitochondria to Epigenetics, Glucocorticoid Signalling and Beyond. Eur J Clin Inv 51:1–21. https://doi.org/10.1111/eci.13625

Haddad S, Chouit Z, Djellal D, et al (2023) Evaluation of mitochondrial and neurobehavioral disorders in brain regions of offspring (F1, F2) after gestating and lactating female rats exposure to low-dose of imidacloprid and cypermethrin. Jou of mic, bio and foo sci 12:e9541–e9541. https://doi.org/10.55251/JMBFS.9541

Han W, Tian Y, Shen X (2018) Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: An overview. Chem 192:59–65. https://doi.org/10.1016/j.chemosphere.2017.10.149

Hassanen EI, Hussien AM, Mehanna S, et al (2022) Comparative assessment on the probable mechanisms underlying the hepatorenal toxicity of commercial imidacloprid and hexaflumuron formulations in rats. Env Sci and Poll Res 29:29091–29104. https://doi.org/10.1007/s11356-021-18486-z

Hladik ML, Main AR, Goulson D (2018) Environmental Risks and Challenges Associated with Neonicotinoid Insecticides. Env Sci Tec 52:3329–3335. https://doi.org/10.1021/acs.est.7b06388

Hofmann T, Buesen R, Schneider S, van Ravenzwaay B (2016) Postnatal fate of prenatal-induced fetal alterations in laboratory animals. Rep Tox 61:177–185. https://doi.org/10.1016/j.reprotox.2016.04.010

Javed S, Iqbal R, Ali R (2023) Teratogenic effect of imidacloprid and dimethoate on albino mice (Mus musculus). Pur and App Bio 12:11–20. https://doi.org/10.19045/bspab.2023.120002

Kapoor U, Srivastava MK, Srivastava AK, et al (2013) Analysis of imidacloprid residues in fruits, vegetables, cereals, fruit juices, and baby foods, and daily intake estimation in and around Lucknow, India. Env Tox Che 32:723–727. https://doi.org/10.1002/ETC.2104

Kapoor U, Srivastava MK, Srivastava LP (2011) Toxicological impact of technical imidacloprid on ovarian morphology, hormones and antioxidant enzymes in female rats. Foo and Che Tox 49:3086–3089. https://doi.org/10.1016/j.fct.2011.09.009

Kaur G, Farooq S, Malik YS, et al (2024) Assessment of Lung Damage via Mitochondrial ROS Production Upon Chronic Exposure to Fipronil and Imidacloprid. Agr Res. https://doi.org/10.1007/s40003-024-00738-2

Klarich KL, Pflug NC, DeWald EM, et al (2017) Occurrence of neonicotinoid insecticides in finished drinking water and fate during drinking water treatment. Env Sci Tec Let 4:168–173. https://doi.org/10.1021/acs.estlett.7b00081

Klarich Wong KL, Webb DT, Nagorzanski MR, et al (2019) Chlorinated Byproducts of Neonicotinoids and Their Metabolites: An Unrecognized Human Exposure Potential? Env Sci Tec Let 6:98–105. https://doi.org/10.1021/acs.estlett.8b00706

Lacagnina S (2020) The Developmental Origins of Health and Disease (DOHaD). Am J Lif Med 14:47–50. https://doi.org/10.1177/1559827619879694

Leslie M (2010) Beyond clotting: The powers of platelets. Science (1979) 328:562–564. https://doi.org/10.1126/science.328.5978.562

Lingappan K (2018) NF-κB in oxidative stress. Cur Opi Tox 7:81–86. https://doi.org/10.1016/j.cotox.2017.11.002

Loser D, Grillberger K, Hinojosa MG, et al (2021) Acute effects of the imidacloprid metabolite desnitro-imidacloprid on human nACh receptors relevant for neuronal signaling. Arc of Tox 2021 95:12 95:3695–3716. https://doi.org/10.1007/S00204-021-03168-Z

Mahai G, Wan Y, Xia W, et al (2022) Exposure assessment of neonicotinoid insecticides and their metabolites in Chinese women during pregnancy: A longitudinal study. Sci of the Tot Env 818:151806. https://doi.org/10.1016/j.scitotenv.2021.151806

Matsuda K, Ihara M, Sattelle DB (2020) Neonicotinoid insecticides: Molecular targets, resistance, and toxicity. Ann Rev Pha Tox 60:241–255. https://doi.org/10.1146/annurev-pharmtox-010818-021747

Matsuda K, Shimomura M, Ihara M, et al (2005) Neonicotinoids Show Selective and Diverse Actions on Their Nicotinic Receptor Targets: Electrophysiology, Molecular Biology, and Receptor Modeling Studies. Bio Bio Bio 69:1442–1452. https://doi.org/10.1271/bbb.69.1442

Mendy A, Pinney SM (2022) Exposure to neonicotinoids and serum testosterone in men, women, and children. Env Tox 37:1521–1528. https://doi.org/10.1002/tox.23503

Mörtl M, Vehovszky Á, Klátyik S, et al (2020) Neonicotinoids: Spreading, translocation and aquatic toxicity. Int J Env Res Pub Hea 17:1–14. https://doi.org/10.3390/ijerph17062006

Nabiuni M, Parivar K, Noorinejad R, et al (2015) The reproductive side effects of Imidacloprid in pregnant Wistar rat. International Journal of Cellular and Molecular Biotechnology 2015:10–18. https://doi.org/10.5899/2015/ijcmb-00017

Ndonwi EN, Atogho-Tiedeu B, Lontchi-Yimagou E, et al (2020) Metabolic effects of exposure to pesticides during gestation in female Wistar rats and their offspring: a risk factor for diabetes? Tox Res 36:249–256. https://doi.org/10.1007/s43188-019-00028-y

Ndonwi EN, Atogho-Tiedeu B, Lontchi-Yimagou E, et al (2019) Gestational exposure to pesticides induces oxidative stress and lipid peroxidation in offspring that persist at adult age in an animal model. Tox Res 35:241–248. https://doi.org/10.5487/TR.2019.35.3.241

Nedzvetsky VS, Masiuk DM, Gasso VY, et al (2021) Low doses of imidacloprid induce disruption of intercellular adhesion and initiate proinflammatory changes in Caco-2 cells. Reg Mec Bio 12:430–437. https://doi.org/10.15421/022159

Nimako C, Ikenaka Y, Akoto O, et al (2021) Simultaneous quantification of imidacloprid and its metabolites in tissues of mice upon chronic low-dose administration of imidacloprid. J Chr A 1652:462350. https://doi.org/10.1016/j.chroma.2021.462350

Nowell LH, Moran PW, Schmidt TS, et al (2018) Complex mixtures of dissolved pesticides show potential aquatic toxicity in a synoptic study of Midwestern U.S. streams. Sci of the Tot Env 613–614:1469–1488. https://doi.org/10.1016/j.scitotenv.2017.06.156

Ohno S, Ikenaka Y, Onaru K, et al (2020) Quantitative elucidation of maternal-to-fetal transfer of neonicotinoid pesticide clothianidin and its metabolites in mice. Tox Lett 322:32–38. https://doi.org/10.1016/j.toxlet.2020.01.003

Ottenbros I, Lebret E, Huber C, et al (2023) Assessment of exposure to pesticide mixtures in five European countries by a harmonized urinary suspect screening approach. Int J Hyg Env Hea 248:. https://doi.org/10.1016/j.ijheh.2022.114105

Passoni A, Mariani A, Comolli D, et al (2021) An integrated approach, based on mass spectrometry, for the assessment of imidacloprid metabolism and penetration into mouse brain and fetus after oral treatment. Tox 462:1–7. https://doi.org/10.1016/j.tox.2021.152935

Pedersen TL, Smilowitz JT, Winter CK, et al (2021) Quantification of Nonpersistent Pesticides in Small Volumes of Human Breast Milk with Ultrahigh Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry. J Agr Foo Che 69:6676–6689. https://doi.org/10.1021/acs.jafc.0c05950

R Core Team (2024) R: A Language and Environment for Statistical Computing

Rankin LC, Artis D (2018) Beyond Host Defense: Emerging Functions of the Immune System in Regulating Complex Tissue Physiology. Cell 173:554–567. https://doi.org/10.1016/J.CELL.2018.03.013

Saito H, Furukawa Y, Sasaki T, et al (2023) Behavioral effects of adult male mice induced by low-level acetamiprid, imidacloprid, and nicotine exposure in early-life. Fro Neu 17:1239808. https://doi.org/10.3389/FNINS.2023.1239808/BIBTEX

Schulz-Jander DA, Casida JE (2002) Imidacloprid insecticide metabolism: Human cytochrome P450 isozymes differ in selectivity for imidazolidine oxidation versus nitroimine reduction. Tox Lett 132:65–70. https://doi.org/10.1016/S0378-4274(02)00068-1

Sharma RK, Singh P, Setia A, Sharma AK (2020) Insecticides and ovarian functions. Env Mol Mut 61:369–392. https://doi.org/10.1002/em.22355

Shattuck A (2021) Generic, growing, green?: The changing political economy of the global pesticide complex. Jouof Pea Stu 48:231–253. https://doi.org/10.1080/03066150.2020.1839053

Sheets LP (2005) Imidacloprid. In: Wexler P (ed) Encyclopedia of Toxicology, 2nd edn. Elsevier, New York, pp 567–570

Shi L, Zou L, Gao J, et al (2016) Imidacloprid inhibits IgE-mediated RBL-2H3 cell degranulation and passive cutaneous anaphylaxis. Asia Pac All 6:236–244. https://doi.org/10.5415/apallergy.2016.6.4.236

Silvanima J, Woeber A, Sunderman-Barnes S, et al (2018) A synoptic survey of select wastewater-tracer compounds and the pesticide imidacloprid in Florida’s ambient freshwaters. Env Mon Ass 190:. https://doi.org/10.1007/s10661-018-6782-4

Stehle S, Ovcharova V, Wolfram J, et al (2023) Neonicotinoid insecticides in global agricultural surface waters – Exposure, risks and regulatory challenges. Sci of the Tot Env 867:161383. https://doi.org/10.1016/j.scitotenv.2022.161383

Stokes KY, Granger DN (2012) Platelets: a critical link between inflammation and microvascular dysfunction. J Phy 590:1023–1034. https://doi.org/10.1113/JPHYSIOL.2011.225417

Swenson TL, Casida JE (2013) Aldehyde oxidase importance in vivo in xenobiotic metabolism: Imidacloprid nitroreduction in mice. Tox Sci 133:22–28. https://doi.org/10.1093/toxsci/kft066

Tasman K, Hidalgo S, Zhu B, et al (2021) Neonicotinoids disrupt memory, circadian behaviour and sleep. Sci Rep 11. https://doi.org/10.1038/s41598-021-81548-2

Thompson DA, Lehmler HJ, Kolpin DW, et al (2020) A critical review on the potential impacts of neonicotinoid insecticide use: Current knowledge of environmental fate, toxicity, and implications for human health. Env Sci Pro Imp 22:1315–1346. https://doi.org/10.1039/c9em00586b

Tison L, Beaumelle L, Monceau K, Thiéry D (2024) Transfer and bioaccumulation of pesticides in terrestrial arthropods and food webs: State of knowledge and perspectives for research. Chem 357:142036. https://doi.org/10.1016/J.CHEMOSPHERE.2024.142036

Vohra P, Khera KS (2016) Effect of Imidacloprid on Reproduction of Female Albino Rats in Three Generation Study. J Vet Sci Tec 7. https://doi.org/10.4172/2157-7579.1000340

Vohra P, Khera KS (2015) A three generation study with effect of imidacloprid in rats: Biochemical and histopathological investigation. Tox Int 22:119–124. https://doi.org/10.4103/0971-6580.172270

Wittenberg RE, Wolfman SL, De Biasi M, Dani JA (2020) Nicotinic acetylcholine receptors and nicotine addiction: A brief introduction. Neur 177:108256. https://doi.org/10.1016/J.NEUROPHARM.2020.108256

Wood TJ, Goulson D (2017) The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Env Sci and Pol Res 24:17285–17325. https://doi.org/10.1007/s11356-017-9240-x

Yan S, Meng Z, Tian S, et al (2020) Neonicotinoid insecticides exposure cause amino acid metabolism disorders, lipid accumulation and oxidative stress in ICR mice. Che 246:125661. https://doi.org/10.1016/J.CHEMOSPHERE.2019.125661

Zhang D, Lu S (2022) Human exposure to neonicotinoids and the associated health risks: A review. Env Int 163:107201. https://doi.org/10.1016/j.envint.2022.107201

Zhang H, Sulzer D (2004) Frequency-dependent modulation of dopamine release by nicotine. Nat Neu 2004 7:6 7:581–582. https://doi.org/10.1038/nn1243

Zhang Q, Li Z, Chang CH, et al (2018) Potential human exposures to neonicotinoid insecticides: A review. Env Pol 236:71–81. https://doi.org/10.1016/j.envpol.2017.12.101

Zhang Z, Shen L, Chen M, et al (2024) The alarming link between neonicotinoid insecticides and kidney injury. Eme Con 10:100376. https://doi.org/10.1016/J.EMCON.2024.100376

Statements & Declarations

Funding

This research was funded by the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES – Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) under grant number 88887.676039/2022-00.

Competing Interests

The authors declare no conflict of interest.

Author Contributions

Bárbara Zanardini de Andrade, Thaís Maylin Sobjak, Leanna Camila Macarini and Ana Tereza Bittencourt Guimarães contributed equally to this manuscript.

Publicado

2025-01-05

Cómo citar

Andrade, B. Z. de, Sobjak, T. M., Macarini, L. C., & Guimarães, A. T. B. (2025). Toxicidad del imidacloprid en el desarrollo embrionario de roedores. Revista Educação, Meio Ambiente E Saúde, 16, e-92. Recuperado a partir de https://www.remas.faculdadedofuturo.edu.br/remas/article/view/92

Número

Sección

Artigo de Pesquisa

Artículos similares

También puede {advancedSearchLink} para este artículo.